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Decomposition of Azo- and Hydrazo-Linked
Bis Triazines

JIMMIE C. OXLEY, JAMES L. SMITH,
and JESSE S. MORAN

Chemistry Department, University of Rhode Island,
Kingston, Rhode Island, USA

In a search for novel energetic materials, azo-linked bis tria-
zines were pursued. Herein the thermal decomposition of 14
simple triazines and 16 hydrazo- or azo-linked bis triazines
were studied using mass spectrometry, permanent gas
evolution, and differential scanning calorimetry. At tem-
peratures far above the melting/decomposition point,
decomposition was complete. Lower temperatures provided
insight into the stability of the functional groups pendant to
the triazine rings. Decomposition gases were identified by
chromatography; they indicated little degradation of the
triazine rings. The s-triazine ring system appears very
stable, resisting decomposition up to 550°C while its substi-
tuents undergo relatively isolated chemistry.

Keywords: azo bis triazines, hydrazo bis triazines, ther-
mal decomposition

Introduction

Since the discovery of 2,4,6-trinitrotoluene over a century ago,
nitration of aromatic carbon ring systems has been thoroughly
exploited. In an effort to construct more energetic yet stable
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species, carbon backbones [1,2] have been abandoned in favor of
high-nitrogen, heterocyclic rings [3-6]. These compounds derive
their energy from large positive heats of formation and large
amounts of gas released rather than the oxidation of a carbon
backbone. Unfortunately, nitration of high-nitrogen heterocycles
is difficult to effect and has not resulted in stable compounds [7].
Unlike other heterocyclic rings—e.g., tetrazines and tetrazoles
[8,9]—s-triazine is quite stable; it tends to undergo depolymeri-
zation before catastrophic decomposition [10].

s -Triazine, containing over 50% nitrogen, is an intriguing
heterocyclic for energetic materials. Triazine rings have been
studied for use in a number of applications—herbicides, pool
chemicals, synthesis, and polymers. Melamine, 2,4,6-triamino-
triazine, one of the most ubiquitous triazines is prepared by
the thermolysis of cyanamide or ammonium dicyanamide [11].
Differential scanning calorimetric (DSC) analysis of melamine
shows two endothermic regions: one at melting point 350-
400°C and the other at 450-500°C. Heating above its melting
point resulted in thermal condensation, losing ammonia to form
melam and melem. The formation of melam requires only elim-
ination of some substituents, whereas a more condensed form,
melem, requires breaking the aromatic system (Scheme 1)
[12]. The strong participation of the nitrogen lone pairs in the
pi-system renders both essentially non-basic [13].

J\I\Hz NH,
NH
aNH, 3 NN NN e
/H NN S BNH, NTON
NH 2 N NH, A
2 N"NTSN
A melam |
6 N7'N PPN
A A N HNTONTONTONH g, on
HzN NH, ! 3 )Nl\*)N\ N|)§N 6 C3Ny
2
6NH\ NN | /IN\\N NI/I\N)%N
3
3 AN { HZN)\N/ N/)\u)\N/ N/)\NHZ
{ 0z e B 3
H2N/I\N)\N)\NH2 melon

Scheme 1. Thermal aminolysis of melamine to form condensed
structures.
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Energetic triazines are not new. Triazido triazine, easily
synthesized from sodium azide and cyanuric chloride, was
reported as early as 1921. Although it is too sensitive for use
in a commercial energetic application, small quantities have
been employed to produce carbon or carbon nitride nanomater-
ials [14,15]. Its decomposition is known to produce nitrogen gas
and, depending on the conditions, cyanogens (CN), and C3Ny
powders [16].

In general, the higher the molecular weight, the more
thermally stable the compound. Therefore, we have been inter-
ested in the possibility of using linked triazines in energetic

R4 Azo or Hydrazo or R4

>_ Diazene 4{ >_ Hydrazine _<
\ />—N— N—</ />— N—N—</
2T T

2 Ra
ID Linkage 51 ﬁz MW % Nitrogen
H-1 -NH-NH- -OMe -OMe 310.3 36.1
A-1 -N=N- 308.3 36.4
H-2 -NH-NH- -l -l 327.9 34.2
A-2 -N=N- 325.9 34.4
H-3 -NH-NH- -NH, -l 289.1 48.5
A-3 -N=N- 287.1 48.8
H-4 -NH-NH- -NH, -OMe 280.3 50.0
A-4 -N=N- 278.2 50.3
H-5 -NH-NH- NH, “NH, 250.2 67.2
A-5 -N=N- 248.2 67.7
H-6 -NH-NH-  -NH, -NHNH,  280.3 70.0
H-7 -NH-NH- -NHNH, -NHNH, 310.3 72.2
H-8 -NH-NH- NH, N, 302.2 74.2
A-8 -N=N- 300.2 74.7
H-9 -NH-NH- 354.2 791
-N3 -N3
A-9 -N=N- 352.2 79.5
Hydrazobenzene  -NH-NH- Ph -Ph
AzoBenzene -N=N-

Figure 1. Azo- and hydrazo-linked bis triazines used in this
study.
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R4

L,

Name Ry R, R; Mw % Nitrogen
Triazine -H -H -H 81.1 51.8
Cyanuric Acid -OH -OH -OH 129.1 32.6
Cyanuric Chloride -Cl -Cl -Cl 184.4 22.8
Chloro diamino triazine -Cl -NH, -NH, 145.6 48.1
Chloro dimethoxy triazine -Cl -OMe -OMe 175.6 23.9
Amino dimethoxy triazine -NH, -OMe -OMe 156.1 35.9
Trimethoxy triazine -OMe -OMe -OMe 171.2 24.6
Hydrazino dimethoxy triazine  -NHNH, -OMe -OMe 171.2 40.9
Dihydrazino methoxy triazine -NHNH, -NHNH, -OMe 171.2 57.3
Melamine -NH, -NH, -NH, 126.1 66.6
Hydrazino diamino triazine -NHNH, -NH, -NH, 1411 69.5
Dihydrazino amino triazine -NHNH,  -NHNH, -NH, 156.2 71.8
Trihydrazino triazine -NHNH, -NHNH, -NHNH, 171.2 73.7
Triazido triazine -N3 -Nj -N3 204.1 82.4
Phenylhydrazine -NHNH, - - 108.1 25.9

Figure 2. s-triazines used in this study.

formulations. Incorporation of a nitrogen linkage was
postulated to decrease sensitivity and increase energy [3,17].
Herein we examined the relative stabilities of triazinyl hydra-
zines and diazenes (hydrazo and azo-linked bis-triazines) with
various substituents (Fig. 1). For comparison azobenzene and
hydroazobenzene and single trisubstituted triazine rings were
examined in an analogous fashion (Fig. 2).

Experimental Section

Samples to be thermolyzed (0.1 to 3mg) were placed in glass
capillary melting-point tubes (Kimax 1.5-1.8 x 45mm) that
had been presealed at one end. The capillaries were sealed
under vacuum (~5mm Hg) to produce a vessel about 40 pul. in
volume and 35mm in length. Depending on the temperature
desired and time needed, the capillary tubes were heated in a
Mel-Temp™ (Barnstead/Thermolyne, Dubuque, IA) melting
point device, an oven, or a tube furnace. The oven and tube
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furnace were brought to the desired temperature before the
sample was introduced. Because the azido compounds would
explode if instantly heated to their decomposition temperature,
the capillaries containing the azido compounds were slowly
heated in the melting point device to visualize the decomposi-
tion and then placed in the muffle furnace when the bubbling
had subsided.

Triazines heated in the presence of solvents were prepared in a
fashion similar to those thermolyzed neat. Samples (5 to 10 mg)
and solvent (~25uL) were added directly into glass capillary
tubes via syringe. Samples ranged from slurries to homogenous
solutions. Sealing of the tubes was performed at ambient pressure,
and the tubes usually contained some headspace. All heating was
performed in an oven, and samples were heated for 1 h at 300°C.
After heating, the capillaries were frozen in liquid nitrogen and,
when broken, quickly inserted into a GC vial (due to gases pro-
duced, much of the sample was expelled from the capillary during
warming). The vial was filled with HPLC-grade chloroform, sha-
ken, and sonicated for 10 min before analysis. Samples ranged
from homogenous solutions to cloudy suspensions.

Triazine decomposition gases were identified using a 5890
series I gas chromatograph with a thermal conductivity detec-
tor (GC/TCD) fitted with an Alltech Hayesep DB 100/120 col-
umn (30" x 1/8” x 0.085" stainless steel). Helium was used as
the carrier gas. The column head pressure was kept at 40 psi,
the column flow was 20mL/min, and the reference flow was
50 mL/min. The inlet temperature was not regulated. The oven
program was as follows: 30°C isothermal for 10min, ramp
20°C/min to 180°C and hold for 17.5min, to give a total run
time of 35 min. The detector was maintained at 200°C in posi-
tive polarity. The GC system utilized two six-port valves and
three compressed gas tanks. Valve 1 alternatively flowed the
carrier gas or helium purge through a section of Tygon tubing
(~12" x 3/8") that could be opened to insert capillaries (which
were then broken individually during GC runs). The carrier gas
then passed to valve 2, which was fitted with standard size gas
loops (25, 50, 100, 250, 500, and 1000 pL) through which a stan-
dard gas mixture could be flowed. Valve 1 was internal and
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pneumatically operated by compressed air and actuated by the
HP Chemstation software, and valve 2 was manually operated
by the researcher. Calibration curves were constructed from a
standardized mixture (Scott Specialty Gases, Plumstead, PA)
of N5 (40.01%), CO (5.01%), CO3 (29.99%), and NoO (24.99%)
in addition to pure methane and difluoroethane.

Condensed-phase products were identified using a 5890 series
IT gas chromatograph with a mass selective detector (GC/MS)
(Hewlett Packard, Palo Alto, CA) fitted with an Agilent Tech-
nologies HP-5MS column (30m x 0.25mm x 0.25um  film)
(Agilent Technologies, Santa Clara, CA). Helium was used as
the carrier gas and held at a constant flow of 10 mL/min. The
inlet was split with a 2mL/min flow, and the temperature
was kept at 250°C. The oven program was as follows: 70°C iso-
thermal for 2 min, ramp 10°C/min to 150°C, then 20°C/min to
280°C, and hold for 3.50 min to give a total run time of 20 min.
A solvent delay of 5 min was required for cyclohexanol samples
and 6 min for benzonitrile. The detector was maintained at
300°C and measured m/z 10-400.

The synthesis of s-triazines derivatives has been exploited for
over 50 years and many are available commercially. Trivial
syntheses are readily available in the literature [18-28].
Dihydrazino methoxy triazine, hydrazino dimethoxy triazine,
amino dihydrazino triazine, diamino hydrazino triazine, and
trimethoxy triazine were synthesized by the Naval Surface
Warfare Center, Indian Head Division, Indian Head, Maryland.
These compounds were provided to the University of Rhode
Island and were used without purification. The preparation of
the bis-triazinyl hydrazines and diazenes used in this research
is described below.

Preparation of N,N'-Bis-(4,6-Dimethoxy-
[1,3,5]Triazin-2-yl)-Hydrazine (H-1)

Hydrazine monohydrate (1.725g, 34.45mmol) was added
slowly to a solution of chlorodimethoxytriazine (12.1 g, 68.9 mmol),
potassium carbonate (9.525g, 68.9mmol), and isopropanol
(100 mL) with stirring at 50°C. The reaction was fitted with a
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condenser and kept at 50°C overnight in an oil bath. The initially
white opaque solution was given a slight pink tint several hours
into the reaction. The reaction was then filtered and washed with
water to give a pink tinted solid which became a white powder, H-
1 (yield 10.64g, 99%), after oven drying. Recrystallized from
acetonitrile (5g/400mL, 88% recovery). mp: 222-224°C. 'H
NMR (200 MHz, DMSO-Dg) ¢ 9.75 (b, 2H, NH-NH), 3.86 &
3.76 (d, 12H, O-CHjy); (400 MHz, CDCl3) 6 7.46 (s, 2H, NH-
NH) 6 3.97 & 3.92 (d, 12H, O-CH;) ppm. *C NMR (50 MHz,
DMSO-Dg) 6 172.2, 171.7, 169.5, 54.376, 54.4, 54.2; (100 MHz
CDCl3) ¢ 173.1 & 172.6, 170.0, 55.2ppm. IR (ATR) 3250 (s),
2957 (s), 1587 (vs), 1366 (vs), 816 (s)cm ™.

Preparation of Bis-(4,6-Dimethoxy-[1,3,5] Triazin-2-
yl)-Diazene (A-1)

To a stirring solution of N-bromosuccinimide (20.4g,
115mmol) in acetonitrile (80mL) was slowly added H-1
(7.4g. 23.8mmol). The white suspension was allowed to stir
at room temperature for 2h as it became a dark orange satu-
rated solution. The reaction was filtered, washed with aceto-
nitrile (2 x20mL) and cold water (2 x20mL), and dried to
give a brown/orange powder A-1. Recrystallization from boil-
ing acetonitrile yields large orange needles (overall yield 5.7 g,
77%). mp: 228-232°C dec. 'H NMR (400 MHz, CDCl;) § 4.15
(s, O-CHj3) ppm; (200 MHz, DMSO-Dg) 4.06 (s, O-CHj3) ppm.
C NMR (100MHz, CDCl;) 6 176.7, 174.1, 56.4ppm. IR
(KBr): 3025, 2954, 1587, 1512, 1477, 1370, 1240, 1108, 1068,
922, 829, 732, 620, 576 cm . Anal. Caled. for C;oH;2NgOy: C,
38.96; H, 3.92; N, 36.35. Found: C, 38.78; H, 3.94; N, 36.02.

Preparation of N,N’-Bis-(4,6-Dichloro-[1,3,5] Triazin-2-
yl)-Hydrazine (H-2) and Bis-(4,6-Dichloro-
[1,3,5]Triazin-2-yl)-Diazene (A-2)

Synthesized similar to the procedure by Loew and Wies [29]. An

improved synthesis and purification procedure for H-2 is now
patent pending by the U.S. Navy.
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H-2 'H NMR (100 MHz, acetone-Dg) d 10.32 (s). '*C NMR
(100 MHz, acetone-Dg) § 172.2, 171.3, 168.7. IR (ATR): 3225,
3095, 2960, 1600, 1560, 1530, 1505, 1425, 1385, 1300, 1265,
1245, 1215, 1190, 1005, 860, 800, 750, and 700 cm ™. mp: >250°C.

A-2 *C NMR (100 MHz, CDCls) 6 173.8, 174.1; (100 MHz
DMSO-Dg) 171.0, 170.0, 167.3 (100 MHz, acetone-Dg) 171.4,
170.5, 167.9 ppm. mp: 199-203°C.

Preparation of N,N'-Bis-(4-Amino 6-Chloro-
[1,3,5]Triazin-2-yl)-Hydrazine (H-3)

A solution of ammonium hydroxide (28g, 28% solution,
0.23mol) in water (250 mL) was cooled to 0°C in and ice bath.
H-2 (34g, 0.10mol) dissolved in acetone (75mL) was added
dropwise as the temperature increased to 30°C. Following addi-
tion, the ice bath was exchanged for a heating mantle and the
temperature was brought to 40°C and the reaction allowed to
stir for 4 h. The initially bright yellow solution became colorless
and then slowly developed a white precipitate during the course
of the reaction. The reaction was cooled, filtered, and washed
free of salts and starting material with water (3 x 200mL)
and acetone (2 x 100mL). Keeping the reaction temperature
near 40°C and the use of only slightly more than 2 equivalents
of ammonia will insure that the tetra amino product is not
formed. The white solid is dried under vacuum to give H-3
(28g, 82%). mp:>350°C. 'H NMR. (400 MHz, DMSO-Dg)
0 9.60 & 9.52 (asy. d, 2H, NHNH) 7.48 & 7.60 (asy. d, 4H,
NH,) ppm. *C NMR 6 (100 MHz, DMSO-Dg) 6 170.0, 168.9,
168.0 & 167.8, 167.2ppm. IR (ATR): 3479, 3310, 3131, 2937,
1516, 1362, 1292, 984, 908, 797 cm ™.

Preparation of Bis-(4-Amino 6-Chloro-[1,3,5]Triazin-2-
yl)-Diazene (A-3)

To a stirring suspension of H-3 (3.06 g, 10.5mmol) in acetoni-
trile (40 mL) was added N-bromosuccinimide (7.52 g, 42 mmol)

in one portion. The opaque white suspension became light
brown over several minutes and was deemed complete by visual
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inspection after all the white starting material had been con-
sumed, usually 3h. The reaction was allowed to stir an addi-
tional hour and was then filtered and washed with
acetonitrile (2 x 20mL) and water (2 x 20mL) to give A-3 as
a dark tan solid (2.69 g, 88%). Very limited solubility in most
organic solvents. mp: >360°C. "H NMR. (400 MHz DMSO-Dy)
d 8.68 (s, NH,) ppm. ">C NMR. (100 MHz DMSO-Dg) 6 173.0,
169.6, 168.4ppm. IR (ATR): 3432, 3307, 3223, 1627, 1557,
1486, 1349, 1298, 1201, 1037, 927, 815cm ™~ '. Anal. Caled. for
CeH4CL N C, 25.10; H, 1.40; N, 48.79. Found: C, 25.51; H,
1.73; N, 47.80.

Preparation of N,N'-Bis-(4-Amino 6-Methoxy-
[1,3,5]Triazin-2-yl)-Hydrazine (H-4)

To a stirring solution of methanol (200mL), water (100 mL),
and sodium hydrogen carbonate (2.6 g, 31 mmol, 2.25 eq.) was
added H-3 (4.0g, 13.8 mmol). The initially white opaque sus-
pension was heated to reflux and became clear and yellow over
the course of 5h. The yellow solution was hot filtered through
glass and rotovapped to 1/30th the volume. The remaining sus-
pension was cooled in the refrigerator, filtered, and the solid
was washed free of salts with water (3 x 10mL) to yield H-4
(2.5g, 65% yield). mp: 280°C dec. "H NMR. (400 MHz DMSO-
Dg) 0 8.91, 8.85, 8.79 (b-m, 1.8H, NHNH) 6.98 & 6.84 (b-d,
3.8H, NH,) 3.75 & 3.68 (b-d, 6H, CHj3)ppm. *C NMR
(100 MHz, DMSO-Dg) 6 171.2, 170.6, 169.0-168.5 (m) 167.9,
53.3ppm. IR (ATR): 3508, 3368, 3208, 2957, 1538, 1456, 1364,
1100, 810 cm ™.

Preparation of Bis-(4-Amino 6-Methoxy-[1,3,5]
Triazin-2-yl)-Diazene (A-4)

To a stirring solution of H-4 (1g, 3.57mmol) in acetonitrile
(25mL) was added N-bromosuccinimide (2.54g, 14.3 mmol).
The white suspension slowing resulted in a dark orange opaque
suspension deemed complete over 4h when no white starting
material remained. The reaction was filtered and washed with
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acetonitrile (25mL), water (25mL), and acetone (25mL). The
product was then air-dried to give A-4 (yield 0.94 g, 94%). mp:
300°C dec. "H NMR (400 MHz, DMSO-Dg) & 8.06 & 8.03 (d,
420, NH,) 3.93 (s, 6H, CHs)ppm. "C NMR (100 MHz,
DMSO-D;) 6 175.5 (C-N=N), 171.8 (C-OMe), 168.9 (C-NH,),
54.7 (CH3) ppm. IR (ATR): 3445, 3300, 3221, 1515, 1350, 1117,
1047, 820 cm ™.

Preparation of N,N'-Bis-(4,6-Diamino-[1,3,5]
Triazin-2-yl)-Hydrazine (H-5)

To a room temperature stirring solution of ammonium hydro-
xide (35mL, 31.5 g, 260 mmol) and sodium hydrogen carbonate
(11.6 g, 138 mmol) in water (100 mL) was added H-2 (10.05g,
30.6 mmol) dissolved in acetone (75mL). The bright yellow
solution became chalky and thick as it was warmed to 65°C.
The reaction was allowed to stir overnight at 60-70°C to yield
a white suspension. The suspension was filtered and the cake
washed free of base and chloride salts with copious amounts
of water, washed with acetone, and then dried under vacuum
to yield H-5 (7.2g, 94%). mp: >360°C. 'H NMR (400 MHz,
DMSO-Dg) 6 8.17 & 8.08 (b asy., 1.7H, NHNH), ¢ 6.14 &
6.08 (b asy., 8H, NH,). **C NMR (100 MHz, DMSO-Dg) 6
168.5, 167.9 & 167.4ppm. IR (ATR): 3408, 3277, 3114, 1634,
1524, 1435, 1348, 1019, 805 cm ™.

A preparation of the same product using gaseous ammonia
proceeds with similar yield [17].

Preparation of Bis-(4,6-Diamino-[1,3,5]
Triazin-2-yl)-Diazene (A-5)

To a stirring solution of NBS (11g, 64mmol) in acetonitrile
(150mL) was added H-5 (4.02g, 16mmol) in one portion.
The initially white suspension was slowly converted to an
orange product with refluxing for 4h. The reaction removed
from heat and the product was allowed to settle. The acetoni-
trile supernatant decanted and water (500mL) was added
and the suspension was sonicated for 10 min and then allowed
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to settle. Carefully decanting the supernatant reduces filtering
time of the very fine particulate, which was oven dried to yield a
dark tan solid A-5 (3.5 g, 88%). mp: >350°C. "H NMR (400 MHz,
DMSO-Dg) § 7.18 & 7.11 (b-d, NH,) ppm. "*C NMR. (100 MHz,
DMSO-Dg) ¢ 175.5, 168.4ppm. IR (ATR): 3458, 3310, 3120,
1634, 1507, 1347, 1007, 814 cm ™.

Preparation of N,N'-Bis-(4-Amino 6-Hydrazino-
[1,3,5]Triazin-2-yl)-Hydrazine (H-6)

To a stirring suspension of H-3 (10.00 g) in water (250 mL) was
added sodium bicarbonate (6.1g, 2.1 eq.) in one portion. To
this white suspension was slowly added hydrazine monohydrate
(7TmL, 4 eq.) at room temperature. The reaction was slowly
brought to reflux and allowed to stir overnight. The reaction
developed a slight yellow/green tone to the clear solution over
a white product that was filtered and washed with water
(3x100) and dried at 50°C to yield H-6 (9.08g, 94%). mp:
280°C dec. Direct insertion MS gave a good ion at m/z 280.
IR (ATR): 3299, 3137, 2940, 1480, 1344, 1123, 943, 801 cm .

Preparation of N,N'-Bis-(4,6-Dihydrazino-
[1,3,5]Triazine-2-yl)-Hydrazine (H-7)

To a stirring suspension of H-1 (5.00g, 16.1 mmol) in water
(250 mL) was added hydrazine monohydrate (25 mL, 515 mmol,
32 eq.). The reaction was heated to reflux and the initially clear
suspension of insoluble crystals resulted in a creamy white sus-
pension overnight. The reaction was allowed to cool and was
then filtered and washed with water (3 x 100mL). The white
product was then dried at 50°C to give H-7 (4.75g, 95%).
mp: 290°C. IR (ATR) 3270, 2953, 1516, 1385, 1338, 1070,
937, 801 cm ™ *. Anal. Caled. for C¢H14Nig: C, 23.23; H, 4.55;
N, 72.23. Found: C, 23.69; H, 4.93; N, 69.79.

Compound H-7 has been reported produced directly from H-
2 [30]; however, this procedure is not recommended because the
very reactive H-2 is subject to oligomerization and the addition
of the hydrazine yields complex products.
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Preparation of N,N'-Bis-(4-Amino 6-Azido-
[1,3,5]Triazin-2-yl)-Hydrazine (H-8)

A 250-mL round-bottom flask was charged with a mixture of
acetic acid and water (1:1, v:v, 100mL) and was cooled to
—5°C in a large ice bath. H-6 (5.0 g, 18 mmol) was slowly added
and dissolved to give a clear colorless solution. Sodium nitrite
(2.6g, 2.1 eq.), dissolved in water (10 mL), was added dropwise
while keeping the reaction below 0°C. The reaction slowly
developed a precipitate over several hours and was allowed to
stir with warming to room temperature overnight. The tan sus-
pension was filtered and washed with water (2 x 100 mL) and
dried to give H-8 (4.75g, 88%). mp: 213°C dec. '"H NMR
(400 MHz, DMSO-Dg) 6 7.1 & 7.2 (asy. d, 4H, NH,) 9.2 ppm
(asy. d, 2H, NHNH). *C NMR (100 MHz, DMSO-Dy): 174.8,
170.3, 168.3. IR: 3445, 3296, 3209, 2183, 2133, 1512, 1375,
1344, 815cm ™ *. Anal. Caled. for CH N4 C, 24.01; H, 1.34;
N, 74.65. Found: C, 23.81; H, 1.91; N, 69.49.

Preparation of Bis-(4-Amino 6-Azido-[1,3,5]
Triazine-2-yl)-Diazene (A-8)

Compound H-8 (2.0g, 6.6 mmol) was added slowly to acetoni-
trile (50 mL) containing N-bromosuccinimide (2.5g, 14 mmol).
The light tan reaction was allowed to stir overnight to yield a
dark orange suspension, which was filtered and washed with
acetone (30mL x 3) to give A-8 (1.73g). mp: 220°C dec.
'"H NMR (400 MHz, DMSO-Dg) 8.35 & 8.33ppm (broad d,
NH,). "*C NMR (100 MHz, DMSO-Dg) 174.7, 170.2, 168.3 ppm.

Preparation of N,N'-Bis-(4,6-Diazido-[1,3,5]
Triazine-2-yl)-Hydrazine (H-9) and Bis-(4,6-
Diazido-[1,3,5] Triazine-2-yl)-Diazene (A-9)

The products were achieved by utilizing the direct displace-
ment of the chlorine substituents of H-2 with sodium azide
and then oxidation with NBS as described by Li et al. [31].
A-9 was recrystallized in acetone (30mL/g) to deep orange
crystals. The crystals exhibited a melting point at 160°C and
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decomposed until exploding at about 210°C. *C NMR
(100 MHz, acetone-Dg) 175.7, 172.9 ppm.

Results and Discussion

The importance of the substituents on the triazine ring was
evident both from the decomposition products and the relative
thermal stabilities of the triazine compounds studied (Tables 1
and 2). Pyrolysis of the selected triazine compounds was con-
ducted neat and in the presence of solvent traps—either cyclo-
hexanol or benzonitrile. Condensed-phase species derived from
the triazine ring were difficult to identify. Melamine-like com-
pounds were only occasionally observed by GC/MS. This is
not surprising since triazine rings, such as melamine, are known
to condense, forming high-molecular-weight chains or lattices,
and are extremely insoluble and nonvolatile (Scheme 1).

The decomposition of the triazines was conducted in sol-
vents in an effort to identify intermediate thermolysis pro-
ducts. This technique utilizes the solvent to functionalize
decomposition intermediates that would otherwise be unstable
or, as is the case with amino triazines, have low solubility and
volatility. Benzonitrile and cyclohexanol were chosen for their
donating properties and thermal stability at high tempera-
ture; heated at 300°C for 24 h they yielded few identifiable
products. In most of the thermolyses in cyclohexanol two pro-
ducts exhibiting a maximum m/z fragment of 99 were found.
These species were formed in cyclohexanol but not benzoni-
trile thermolyses, and their formation was independent of
the substitution of the triazine rings. One species appears to
be a simple oxidation of cyclohexanol (m/z—1amu) and has
a fragmentation pattern similar to cyclohexanol. The second
species was observed only in cyclohexanol and only with the
triazine compounds containing one or more methoxy substitu-
ents. This second species exhibited a base peak of 76, which, to
date, has not been identified. Cyclohexyl ether was the pri-
mary decomposition product when cyclohexanol was heated
to 300°C, thereby introducing a significant amount of water
to the decompositions.
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Scheme 2. Rearrangement accompanying methoxy substitu-
ents on triazine rings.

Thermolysis of the triazines in benzonitrile formed benza-
mide and its methylated analogs, N-methyl- and N,N-dimethyl-
benzamide. These were formed by capturing a methyl during
the rearrangement of methoxy substituents. Methoxy triazines
are known to undergo rearrangement in the melt or while
heated in solvents. The methyl is transferred to a neighboring
nitrogen, leaving a ketone functionality behind [32,33]. Thus,
trimethoxy triazine formed 1,3,5-trimethyl-1,3,5-triazinane-
2,4,6-trione as one thermolysis product (Scheme 2). Because
this product was also observed with triazines containing only
one or two methoxy substituents, some portion of rearrange-
ment is intermolecular.

As discussed below, methoxy and hydrazino substituents are
extremely labile. Furthermore, to one amu, they exhibited the
same m/z of 31. Therefore, a number of different compounds
yielded the same thermolysis products. Naturally, the products
detected were only those with sufficient volatility to survive
GC/MS analysis. One set of products, at relatively long reten-
tion times, were derived from the reaction of benzonitrile with a,

Lol Ol Ot 0L
| |

140 31 27 42
NH -R NH NH
O O~ O O
HN4</ - HN—</ _\<N _ HN—( N—> HN—///
N= N= —
N=
104 _<NH2 213 NH, 187 NH, 145 =\

NH;

Scheme 3. Possible structures and their decomposition via
electron impact MS (shown as neutral fragments).
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Thermal Degradation Route

MeO OMe OMe OMe

>/_N\ N—R N:<N—>H2N—H N:<N—>HN N:<N
AT T

MeO OMe OMe OMe

| | |

Similar cascade of GC/MS Products

\)\ \J\/
)\)\ 94 min and/or )\/& 11.5min =—

Scheme 4. Thermolysis products including rearrangement
(1,3,5-trimethyl-1,3,5-triazinane-2,4,6-trione) and decay (6 amino-
1,2,3,4-tetrahydro-1,3-dimethyl-1,3,5-triazine-2,4-diol) species.

triazine species. Scheme 3 suggests a combination of products
among various hydrazino compounds followed by fragmenta-
tion pathways that result in similar products.

Thermal rearrangement of the methoxy substituents allows
for the production of structural isomers. In compounds with
more than one methoxy substituent, a number of decomposi-
tion products with a similar fragmentation pattern were pro-
duced. These similarities are seen in compounds that are
proposed to be involved in the decay route (Scheme 4). H-1
or A-1 decay to include hydrazino dimethoxy triazine and
amino dimethoxy triazine by stepwise degradation, and the
decay products from each can be detected in others along
the decay route.

Only two triazines were sufficiently stable or sufficiently vola-
tile to be observed by GC/MS at high temperature (550°C)—
melamine and cyanuric chloride. In contrast, azido triazines
solutions, subjected to moderate temperatures (225°C), yielded
no starting material or other volatile species as detected by

GC/MS.
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Gas-phase products are shown in Tables 1 (hydrazines and
diazenes) and 2 (single triazine rings). The major decomposi-
tion gas observed was nitrogen. A review of the decomposition
gases of compounds lacking nitrogen-containing substituents
(A1, H1, A2, H2) clearly indicates that nitrogen gas is derived
from the hydrazo or azo linkage. In the absence of nitrogen-con-
taining substitutents, the diazenes formed about 0.7-0.8 mol Ny
per mole of compound, whereas the analogous hydrazine com-
pounds produced 0.5-0.6 mol N, per mole. These values are
substantially less than the 1mol of nitrogen that could be
potentially formed from the linkage. The same trend was
observed in the thermolysis of azobenzene, which formed
0.47 mol Ny per mole of compound and hydroazobenzene, which
produced 0.26 nitrogen per mole. Presumably, the hydroazo
linkage diverts more nitrogen to ammonia production than
the azo linkage. Production of nitrogen from the azo linkage
is likely to proceed by a free-radical mechanism. A number of
studies have examined the decomposition of azoalkanes (R;-N=
N-R,) [34,35] and found that the symmetry around the azo
bond determines the mechanism by which nitrogen is lost.
Unsymmetrical bonds favor a two-step, radical loss, whereas
symmetrical compounds tend to lose nitrogen in a concerted
homolysis; but both mechanisms appear to occur simulta-
neously [34].

Nitrogen-containing ring substituents produced nitrogen and
ammonia gas. Substitution of the triazine ring with amine groups
did not dramatically increase nitrogen production, but substitu-
tion with hydrazino or azido groups did. Azides are known to
thermally decompose to 1 mol of nitrogen and a terminal nitrene
(-N::) under some conditions. The latter can rearrange to final
products that may or may not include release of the third nitro-
gen atom [36]. The 1,5-dipolar cyclization of azides to tetrazoles
is not stable on the triazine species and does not appear to be
influential in the decomposition [37,38]. Instead, triazidotriazine
decomposes to release about 4.5mol of gas; this is 1.5mol (all
three nitrogens) from each azido group.

Decomposition gases resulting from destruction of the
actual triazine ring were minor. Ammonia was observed when
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hydrazine was one of the triazine ring substituents. Stoichiome-
try is such that 1mol of NHNH, pendant to the ring would be
capable of forming 0.5 mol of Ny and 1.0 mol NHj. In the series
melamine, diamino hydrazino triazine, dihydrazino amino tria-
zine, and trihydrazino triazine, it was found that each succes-
sive hydrazine added about 0.5mol of nitrogen to the
decomposition gases. In similar fashion, H-6 and H-7 gave
about 1.5 and 2.5 mol of nitrogen corresponding to two and four
hydrazino substituents plus a hydrazo linkage, respectively.
Increasing ammonia release was detected with increasing
hydrazino substituents. However, the chromatographic peak
of ammonia was not sufficiently separated from that of water
nor did we know the specific response of ammonia; therefore,
the quantitation shown in Table 3 is only qualitative.

Carbon-containing thermolysis products were produced in
minor amounts, unless the triazine ring possessed a methoxy
substituent. Carbonaceous decomposition products were identi-
fied as carbon monoxide, methane, methanol, and CO,. Triazine
rings with no methoxy substituents produced, at most, 0.2 mol
CO5 per mole of compound, indicative of only minor ring
decomposition. Very small amounts of water, contained on
the glass or present as a hydrate, are possible sources of oxygen,
and sources of carbon from trapped solvents or reagents are
expected to be very low.

Because it was difficult to account for the amount of hydro-
gen observed in the decomposition products, it was thought
that hydration of the crystals or the glassware might have been
involved. For that reason several compounds were mulled
with 20 wt% water and heated as wetted mixes. Ratios of the
decomposition products remained unchanged, though it might
be expected that excess water vapor would favor ammonia
production (although now chromatographically hidden under
a substantial water peak).

Thermal stability screening compared DSC scans collected at
20°C/min (Tables 1 and 2). Some of the scans were difficult to
interpret because there were no clear peaks or valleys but
rather very low thermal events expressed as wavy baselines.
As will be discussed below, we did not think this was a problem
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with our technique or instrumentation but rather an artifact
resulting from compounds that exhibit endothermic events
(melting, phase change, rearrangement), which partially or
completely overlapped with exothermic decompositions. In
some cases, these endo- and exotherms are very pronounced.
Seven of the two dozen compounds screened exhibited no
exotherm in the region examined (50-500°C). The compounds
showing this exceptional stability were symmetrically substi-
tuted triazines (cyanuric acid, cyanuric chloride, and mela-
mine), which have extremely high melting points, and the
linked-triazines where the only substituents were chlorine or
amine (A/H-2, A/H-3, A/H-5). As a general rule possessing a
high melting point makes a compound less subject to thermal
decomposition; thus, the stability of cyanuric acid and mela-
mine is reasonable. Among the multi-ring compounds, high
stability is only found with two substituents, which have few
modes of reactivity available to them.

The importance of the substituents on the triazine ring to
thermal stability is evident. Compounds with the same substi-
tuents exhibited similar thermal stabilities, regardless of
whether they were single-ring triazines or the linked analogs.
The least stable compounds were those containing two azides
(A-9, H-9, triazidotriazine) or two methoxy (A-1, H-1, amino
dimethoxytriazine) substituents per triazine; they exhibited
an exotherm in the 220-230°C range. Compounds with only
one azido substituent per ring (A-8, H-8) produced an exotherm
somewhat higher (~240°C; Trimethoxytriazine appeared an
exception with an exotherm around 260°C.)

The observed DSC traces were diverse. A few were a single
sharp exotherm; a few exhibited an endotherm greatly
separated from an exotherm; some showed an endotherm
immediately followed by an exotherm; some showed only one
or several endotherms; and a few yielded broad unformed
peaks and valleys. As was mentioned above, we believe that
these are due to an endothermic event occurring at close
temperature, before, during, or after an exothermic event.
The most typical of these is the often observed melt-with-
decomposition. However, an endotherm can indicate a change
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Scheme 5. The rearrangement of cyanuric acid, melamine, and
trimethoxy triazine.

n-NH2 un- V2 NH
|
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Scheme 6. Two possible rearrangement pathways for hydra-
zine substituents.

in polymorph or, in the case of the methoxy-substituted
compound, a rearrangement.

H-1 and amino dimethoxy trazine have similar melting
points only slightly lower than A-1. Observation of their
melting revealed that the melt began with the formation of a
clear, colorless liquid followed by a small amount bubbling
and, as heating continued, a sudden conversion of the liquid
to an opaque solid. This is postulated to be a high melting
rearrangement product. A-1 melted with pronounced decompo-
sition suggesting elimination of the nitrogen linkage; the
compound did not re-form a solid. Owing to the methyl rearran-
gement as described above, only small amounts of CO, CO,, or
methane/methanol were detected. Analogous to the methoxy-
rearrangement is that of amino or hydroxyl groups on triazine
rings (Scheme 5). A similar reaction with the hydrazine substi-
tuent has not been postulated, but that substitution could
undergo more than one type of rearrangement (Scheme 6).

Conclusions

Among the triazine compounds examined, it appears that
their thermal stability is entirely dependent upon their exo-ring
substitution. Data suggest that the triazine ring was stable for
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up to an hour at 550°C. The linkage between two triazine rings
did not appear to alter the decomposition of substituents or act
as a trigger mechanism for the decomposition of the triazine
ring. Even in the azo compounds, breakage of the linkage,
evidenced by the evolution of nitrogen, did not produce large
quantities of carbonaceous gas. Of course, it is likely that
cleavage of the ring did not completely devolve it into simple
gases but resulted in C=N polymers and rings as amorphous,
insoluble residue. With the exception of the azido-substituted
triazine rings, the compounds studied had high thermal stabi-
lity. The s-triazine backbone appears to offer thermal stability
not found in other heterocycles; however, further research is
necessary before conclusions as to their usefulness as energetic
materials can be made.
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